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The knowledge of stress distributions within a short fibre reinforced composite is useful for an 
understanding of the micromechanical load transfer between fibre and matrix. This is 
especially interesting in the case of a plastifying matrix about which little can be found in the 
literature. This paper first describes a newly developed finite element model in three 
dimensions which contains several closer to reality aspects than conventional models. Using 
this model, stress distributions are presented for an almost perfectly elastic and for a strongly 
plastified deformation stage of a specimen with a high degree of fibre orientation. These 
distributions and their implications are discussed in detail. 

1. In troduct ion  
The study of the stress transfer between fibres and 
matrix in a short fibre reinforced composite, especially 
for the case of non-linear material response, is a basis 
for further material improvement. The results ob- 
tained can be used for the improvement of analytical 
models and failure theories or for examining the influ- 
ence of interphases between fibres and matrix. Ter- 
monia [1], Choi [2], Rainer [-3], Nezbedovfi and 
Davidovi~ [4] and others used boundary or finite 
element techniques to tackle this problem. Most of 
these models are based on two dimensional simu- 
lations, assuming for the third dimension a plane 
stress, plane strain or a rotational symmetry behavi- 
our. Other authors, for example Atkinson et  aI. [5], 
Phan-Thien et al. [6] and Di Anselmo et al. [7], 
calculated stress distributions for the matrix around a 
fibre placed in a large volume of matrix. All stress 
distributions show high concentrations at the fibre 
ends as well as a complicated stress transfer pattern 
within the matrix material. 

In this paper a close to reality finite element (FE) 
model is described, which has the following features: 

1. All fibres are aligned in the same direction. The 
model is therefore relevant to short fibre composites 
with a high degree of fibre orientation, as found for 
example in injection-moulded tensile test specimens 
[8]. 
2. Fibres are positioned such that the stress transfer 
from fibre to fibre is not merely along the fibre direc- 
tion but also by shearing forces to adjacent fibres. 
3. The fibres are placed in three dimensions since a 
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real composite also has three dimensions. A reduction 
to two dimensions would have required an assump- 
tion on whether the model is in a plane stress, plane 
strain o r  a state of radial symmetry [-2, 4]. 
4. Since fibres in real composites do not have a coup- 
ling agent at the ends (fibres are broken after being 
coated) the model assumes no contact (i.e. no load 
carrying capability) between fibre end and matrix. 
5. The following parameters can be varied freely: 

(i) Fibre length, If. This corresponds to the mean 
fibre length within a composite. 

(ii) Fibre diameter, dr. 
(iii) Fibre volume fraction, Vf. 
(iv) Elastic tensile moduli (El, Era) and transverse 

contraction (vf, Vm) of fibre and matrix. Plasticity 
of the matrix is included by input of a measured 
stress-strain curve of the matrix material. 

This model is considered to be close to reality since a 
comparison of measured and calculated elastic moduli 
and stress strain curves shows good agreement. 

The plastification of the model is approached on the 
basis of a yon Mises criterion. The change from a 
perfectly elastic to a fully plastified material is docu- 
mented. 

2. Principal ideas in the development of 
the FE model 

This new FE model was developed to push the com- 
promise between restrictions due to available com- 
puter resources and closeness to existing composites 
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as much as possible in the latter direction. Since a 3-D 
model which requires far more elements than its 2-D 
counterpart,  seemed inevitable (see Introduction, 
point 3), a fibre orientation distribution could not be 
included. This would have required to include several 
fibres at different angles and relative positions to each 
other. This restricts the application of the model to 
composites with a high degree of fibre orientation. 

A real composite contains fibres which are not 
located just behind or beside each other. Often the 
fibres are shifted against each other, so that there is a 
significant amount  of shear forces between adjacent 
fibres. The simplest composite model (i.e. the model 
with the highest amount  of symmetry) which takes 
account of these ideas is shown for the x-z  plane in 
Fig. 1. Following the y-direction, the same configura- 
tion of fibres is found again and again; however, each 
plane is shifted in the z-direction. This model of a 
composite is infinite in the x-, y- and z-directions and 
therefore (intentionally) contains no boundary effects. 
As explained in point 4 of the introduction, fibre ends 
in a composite should not carry any load to the 
matrix. Usually FE models do not treat fibre ends in 
this way (see, for example, References 2-4) which leads 
to significant stress transfer across the fibre ends. 

A FE model must be finite in size. Fig. 2 shows the 
extraction of a unit cell from the infinite model. A 
repetition of this unit cell (including inversions of it) 
builds up completely the former model. Therefore no 
information is lost. 

The symmetry which was used in the reduction to 
the unit cell establishes restrictions to the displace- 
ment modes of all nodes at the surfaces of the reduced 
model. These boundary conditions are also docu- 
mented in Fig. 2: whenever a surface coincides with a 
plane of symmetry of the full model all nodes on this 

surface must always move by the same amount  in the 
direction perpendicular to that surface. In the special 
cases of the areas with z = Zmi n = 0, y = Ymin ---- 0 and 
x = y, the nodes were defined not to move away from 
the symmetry boundary at all. This is no ad hoc choice 
but merely the use of symmetry and the requirement of 
the structure being statically determinate. The load 
is applied by moving the nodes on the plane with 
z = Zma x by a distance d in the z-direction. 

The plane with x = Xmax is not an ordinary sym- 
metry plane since the mirror image of the side 
X > Xma x does not coincide with the side x < Xma x. 
However, there is a point symmetry for each node 
having z = (Zmax + Zmin)/2. If one regards any of these 
nodes the following symmetry relations must hold for 
all nodes with the same value of x and y: 

Ux(I) + Ux(3) = 2Ux(K) 

Uy(I) + Uy(J) = 2Uy(K) 

Uz(I) + U=(J) = 2U=(K) 

K is node with z = ( Z m a  x -]- Zmin)/2. The nodes I and J 
have the same x- and y-values as K, but lie sym- 
metrical to K (one above and the other below). The 
terms Ux(K), Uy(K) and Uz(K) take care of a 
general movement  of the plane, which may for ex- 
ample be caused by Poisson contraction. The nodes I 
and J always move anti-symmetrically with respect to 
K. Without these less obvious conditions of symmetry, 
a model twice as large would have been necessary. 

Apart  from these constraints the symmetry used 
introduces as a free parameter  the quotient a/b (see 
Fig. 1). If everything else is kept fixed, this parameter  
controls how close the fibres lie together in the x- 
(respectively y-) and the z-directions. Its choice is not 
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Figure 1 Assumed relative placement of fibres within a specimen with a high degree of fibre orientation. 
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Figure 2 Extraction of a unit cell from the infinite model of the composite. 

critical as will be shown later. A good assumption for 
its default value seemed to be a / b  = 1. 

3. D e ta i l s  o f  t h e  f i n i t e  e l e m e n t  m o d e l  
The constraints at the plane with x = Xma x required a 
symmetrical placement of nodes with respect to those 
having z = (Zma x + Zmi,)/2. This led to the FE mesh 
shown in Fig. 3. The mesh is not specifically refined 
about the fibre end where, due to the missing connec- 
tion between fibre end matrix, there is a stress singul- 
arity. This is no problem as long as high quality results 
in this particular region are not required. The element 
type used was an 8-node solid having a 2 x 2 x 2 lattice 
of integration points with Gauss integration (ANSYS 
program: STIF45; ABAQUS program: C3D8). 

It should be noted that, since the ANSYS program 
removes one translational degree of freedom of the 
model for each constraint equation and one for each 
boundary condition, it was a problem to include all 
constraints. This was solved by introducing nodes 
coupled to the "critical" nodes by very stiff springs 
such that a boundary condition could remove, say, the 
z-degree of freedom from a node and the displacement 
condition could remove it from the coupled node. 

In the case of the linear elastic calculations full 
linearity was required from the program (i.e. all non- 
linearities were turned off) so that the resulting model 
stiffness did not depend on the actually imposed dis- 
placement d. 

In the case of a plastic material for the matrix, the 
large deflection and distortion options were turned on. 
The matrix plasticity was put into the model as a 
curve of true stress ~ versus plastic strain %~(where 
~pl = ~tot - -  ~el = ~tot - -  a/Ematrix)  a s  measured with a 
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Figure 3 Typical finite element mesh used for the calculations. This 
mesh was used for specimen PA6-GF-18 (see Table I); (a) x-z-plane 
(y = 0); (b) x-y-plane (z = 0). 

tensile test specimen. This, however, merely deter- 
mines the uniaxial behaviour of a material. It is not 
obvious, and also strongly material-dependent, how 
the measured behaviour can be generalized for the 
application of a 3-D stress state I-9, 11, 12]. For  the 
calculations the von Mises stress-strain behaviour 



was assumed 

2 - -  (crx(Yy ..~ crycrz "~ crxcrz) 2 2 + c r z  cram = [ c r x  + cry 

2 1 / 2  2 + ~=)] (1) + 3(~2y + T, yz 

where crvM is the von Mises stress and ~ is the shear 
stress. This criterion assumes that  the yield of the 
material is independent  of the equivalent pressure 
stress. The use of this law is not  very suitable for 
polymers. However,  finding a better law requires a 
better experimental foundat ion for 3-D stress-strain 
states in polymers I-9]. 

4. Results 
All results f rom elastic analyses were obtained with the 
ANSYS program. Results of plastic analyses were 
calculated with ABAQUS.  

4.1. Elastic tensile modul i  and stress-strain 
behaviour 

For  a given strain of  the specimen the corresponding 
stress had to be determined. This was done by sum- 
ming nodal  forces, F, as follows: 

IX.oaos with . . . . . .  F=,tl + lY~nodes with ==oF=,ll cr(~) = 
2A 

(2) 

A is the cross-sectional area of  the model. Note  that  
the sum of the forces at the top and bo t t om of the 
model  are not  equal. This is because there is a shear 
transfer of  forces to adjacent fibres. 

This method  for calculating stress was compared  for 
the elastic case with a more  straightforward method  in 
which the stress is determined from the stored poten- 
tial energy within the model  

f f  1 Epo t = F(s)ds - ~Voe (3) 

Epo t is the stored energy (and is directly output  by 
ANSYS) and V is the volume of the model. The results 
for cr as determined by Equat ion  3 are identical with 
those from Equat ion  2. Thus the use of Equat ion  2, 
which is the direct evaluation method  for plastic 
materials, was confirmed. 

Table 1 shows, for two types of G F - P A 6  tensile test 
specimens, experimental and calculated values for the 
elastic tensile modulus.  The data  correlate very well 
with each other. As ment ioned in the Introduct ion,  the 
fibres in the test specimens are highly oriented. Also 
shown is the effect of a variat ion of the ratio a/b. 
Although a wide span of a/b was covered, deviations 
from the default value a/b = 1 are in the region of 
10%. 

Fig. 4 shows experimental stress-strain curves for 
PA6 and the two types of composi te  specimens. In 
addition, the calculated curves for the latter materials 
are given. The measured stress-strain relation for the 
neat polyamide was the basis for the plasticity calcu- 
lation of  the matrix. As in the experiment, the calcu- 
lated relations show higher stresses for the specimen 
having the higher fibre volume fraction. However,  the 

TABLE I Characteristic data of two E-glass fibre (GF) reinforced 
polyamide 6 (PA6) specimens (e.g. PA6-GF-18 contains about 18 
vol. % GF in a PA6-matrix) and calculated and experimentally 
obtained stiffnesses. 

Characteristic PA6-GF-18 PA6-GF-14 

Fibre radius rf (mm) 0.007 0.005 
Fibre length, 1 r (mm) 0.18 0.14 
Fibre volume fraction, 
Vf (%) 17.58 15.35 
Elastic tensile modulus of 
fibre Ef (N mm -2) 70000 70000 
Transverse contraction ratio 
of fibre, vf 0.35 0.35 
Elastic tensile modulus of 
matrix, E m (N mm -2) 1990 1990 
Transverse contraction ratio 
of matrix, v m 0.42 0.42 

Experimental stiffness 
(N mm -2) 9140 8210 

3D FE-model calculated 
stiffness (N mm- 2) 
a/b = 0.2 10247 9336 
a/b = 1 9227 8491 
a/b = 6 9162 8317 
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Figure 4 Experimental and calculated stress-strain curves. Curves 
(a), experimental values for ( ), PA6-GF-18 (vf = 17.58%) and 
( . . . .  ), PA6-GF-14 (Vf = 15.35%). Curves (b), calculated values 
using the FE model for (-O-Q-), PA6-GF-18 and (--  �9 - -  �9 --), 
PA6-GF-14. Curves (c), experimental values for PA6. 

calculated stresses for a given strain are much lower 
than in the experiment. This is probably  due to the 
von Mises criterion used, which is not  experimentally 
confirmed for polymers. There may  also be some dis- 
crepancy due to rate-dependent creep of  the material 
which was not  included in the calculations. Of  course, 
the assumptions made in the derivation of the model  
also influence the quality of the results. 
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4 ,2 .  S t r e s s  d i s t r i b u t i o n s  in  t h e  p l a s t i c i z i n g  
m o d e l  

This section and the following refer to a model made 
according to the specifications of specimen PA6-GF- 
18 as characterized in Table 1. 

Figs 5-7 show the shear stress X~z, the longitu- 
dinal stress or= and von Mises stress ~M for the plane 
with y = 0, respectively, as calculated for two different 
strain levels. At e = 0.5% the model has an almost 
perfectly elastic response; at ~ = 2%, however, much 
of the matrix is plasticized. I t  should be noted that the 
displayed stresses are (deliberately) not averaged 
across the boundary between fibre and matrix. 

The von Mises stress plot (Fig. 7) demonstrates that 
plastification moves from the fibre end into the matrix 
and then travels along the fibre towards its centre. The 
shear stress distribution (Fig. 5) shows that almost all 
the load from the fibre is transferred to the matrix by 
shear stresses. These are largest in the matrix region at 
the fibre end. Many of the shear stresses are trans- 
ferred to adjacent fibres. The distribution of the longitu- 
dinal stress (Fig. 6) is included for completeness. It  
should be noted that the matrix moves away from the 
fibre end to which it was deliberately not connected. 

4 .3 .  S t r e s s  c o m p o n e n t s  a l o n g  a l i n e  p a r a l l e l  
t o  t h e  f i b r e  

As in the previous section, the reference specimen was 

PA6-GF-18. The stresses in the matrix close to the 
fibre will now be examined more closely. All the 
following plots refer to a straight line close to and 
parallel to the fibre, having x = 1.23 r e, y = 0 and z 
from 0 (middle of the fibre) to 0.0972 m m  ( = Zm,~) 
where rf is the fibre radius. 

Figs 8 and 9 show all six stress components and the 
von Mises stress along this line for ~ = 0.5% (quasi- 
elastic case) and ~ = 2% (strongly plastified matrix). 

1. Stress component  crz: The stress within the fibre is 
least at its ends (z = 0.09 mm) and highest at the 
centre of the fibre (z = 0). The matrix close to the 
fibre is forced to have roughly the same z-deforma- 
tion as the fibre. Therefore the Crz-stress in the 
matrix is higher near the middle of the fibre and 
falls off towards the fibre ends. However, as the 
fibre has transferred all stress to the matrix 
before its end is reached (i.e. transfer range z 
= 0-0.09 mm) the z-stress of the matrix can rise 

again to higher values; a maximum was calculated 
at z = 0.092 mm. After that, it falls off again due to 
the shear transfer of forces to adjacent fibres. 

2. Shear component  Z~z: At the centre of the fibre 
the shear component  in the surrounding matrix is 
z~= = 0 since the shear forces invert at this sym- 
metry boundary. In the elastic case, a gradual 
build-up of shear stress towards the fibre end can be 
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Figure 5 Dis t r ibu t ion  of the shear  stresses zx= in the p lane  y = 0 for (a) an  a lmos t  perfectly elastic case (e = 0.5%) and  (b) a s t rongly  plastified. 
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Figure 7 Distribution of the yon Mises stresses in the plane y = 0 for (a) an almost perfectly elastic case (~ = 0.5%) and (b) a strongly plastified 
model (e = 2%). The load is applied to the right (positive z-direction). 
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Figure 9 Stress components within the model for a total strain of 
= 2%. The yon Mises stress has reached the yield stress level of the 

matrix (as determined in a unidirectional tensile test) over almost �89 
of the full fibre length (i.e. the matrix near the fibre is strongly 
plastified). Curve (a), %m; (b) %~; (c) c%; (d) %; (e) ax. 

seen. In  the plastic case (a = 2%, Fig. 9), this com- 
ponent  only builds up to a value of  about  
25 N m m  -2. This value corresponds approxim- 
ately to that  which Equat ion  1 gives, if a yield stress 
of  o = 43 N m m - 2  is assumed and all other  stress 
componen t s  (i.e. ox, oy, o=, ~xy, ty2) are set to 0. 
This means that  this shear componen t  is the domi-  
nant  stress leading to plastification. 

3. Stress componen ts  ox and %: The matrix ahead of  
the top of  the fibre is stressed to a certain amoun t  in 
the z-direction. It therefore contracts.  This trans- 
verse cont rac t ion  causes stresses in the y- and x- 
directions towards  adjacent fibres. This explains 
the elevation of ox and 6y in the regions of  the fibre 
ends and, due to the  symmetries involved, also at 
the fibre centre. 

4. Other  stress components :  The remaining shear 

stresses Zxr and "cy z are 0 for all points along the line 
chosen due to the symmetry  of the model. 

The von Mises stress distribution, OvM, shows an 
almost  mono ton ic  increase from a positive value in the 
area of the fibre centre up to a point  where the matrix 
is fully plasticized. In this case it reaches the yield 
stress of the matrix (Fig. 4) and remains roughly  on a 
constant  level. 

Fig. 10 shows the stress txz along the line (x 
= 1.23rf, y = 0 and z = 0 to Zm,x = 0.0972 mm) for 

several total deformations of  the model. The narrower  
distances between the individual contour  lines above a 
= 1.5% indicate the influence of the plastification of  

the matrix. It also becomes evident from these results 
that  the most  endangered  point  for a failure of the 
composi te  is the fibre end [13, 14]. In  an elastic 
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Figure 10 Shear stress within the model for several total strains of 
the model. Curve (a) ~ = 2.5%; (b) e = 2%; (c) ~ = 1.5%; (d) e = 1%; 
(e) 8 = 0.5%. 

calculation, there actually exists a crack tip causing a 
field with infinite stress at this point. In a plastic 
calculation the stresses are bounded by the von Mises 
criterion used. However, the deformation of the ma- 
trix is still largest near the fibre end. 

5. Conclusions 
A finite element model with several new and close to 
reality aspects was presented. The most important 
aspects are listed below. 

(i) Fibres can transfer significant amounts of stress 
to adjacent fibres causing broad shear bands 
between adjacent fibres. 

(ii) The model does not need to assume a state of 
plane stress, plane strain or radial symmetry 
since it is built up in three dimensions. 

(iii) The fibre ends are not fixed to the matrix, 
corresponding to the fact that in reality there is 
no coupling agent at these places. 

(iv) The model corresponds to an infinitely ex- 
tended structure so that no surface effects influ- 
ence the results. 

(v) The physical parameters/f, df, Vf, E f ,  Era, Vf, V m 
and a plasticity stress-strain relation can be 
chosen within physical bounds. 

(vi) The behaviour of the model, especially for the 
elastic case, was shown to correspond well with 
experimental measurements. 

(vii) The only model-inherent parameter a/b was 
shown not to influence the model's stiffness 
calculation drastically. 

(viii) Stress fields for a quasi-elastic state and a 
strongly plastified model were discussed in de- 
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tail with emphasis on the effect of the relative 
fibre placement and the effect of the uncoupled 
fibre end. 

(ix) The most critical region for possible failure-- 
the matrix near the fibre end--was pointed out. 

(x) The model presented here may be used for an 
optimization of several composite properties 
(for example, the elastic modulus) by variation 
of fibre length and radius. 

An interlayer of macroscopic thickness, say 1 I~m, can 
easily be included by a redefinition of the element 
material properties in the vicinity of the fibres. Such an 
extension of the model is under investigation at pre- 
sent. It may help to study how such an interphase 
must theoretically be optimized with regard to thick- 
ness and mechanical performance in order to achieve 
maximum values of energy to failure of these materials. 
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